PER > PDF imprimable > La pollution des captages pour l'alimentation en eau potable

La pollution des captages pour l'alimentation en eau potable

La pollution des captages pour l'alimentation en eau potable

En Franche-Comté, comme dans le reste de la France, les risques sanitaires liés à la consommation d'eau sont relativement faibles compte tenu de la performance des systèmes de traitement et de contrôle. De très nombreux paramètres font en effet l'objet de normes définies par le code de santé publique. Néanmoins, il existe des risques difficiles à identifier en lien avec la consommation de doses très faibles de substances chimiques pendant une longue période. Les paramètres régionaux sont présentés dans les thématiques dans l'onglet eau (zones karstique ne filtrant pas les polluants, secteurs de tension favorisant la concentration des polluants et multiplicité des réseaux de distribution).

La Franche-Comté est la première région industrielle de France (au regard de la part de sa population active dans ce secteur). L'activité industrielle peut de ce fait constituer une source de pression sur la ressource en eau régionale (prélèvements importants d'eau liés à certains process industriels très consommateurs, rejets diffus de métaux lourds, rejets salés...). Bien que les principales industries soient encadrées par une réglementation stricte et soient de ce fait soumises à des contrôles et un suivi réguliers, il n'en demeure pas moins que les anciens sites industriels et certaines petites industries (Pays Horloger notamment) peuvent induire une pollution chronique du milieu naturel.

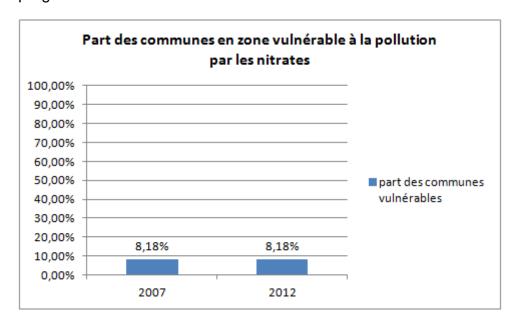
L'agriculture reste également un des fondements de l'économie régionale et joue un rôle « charnière » en matière de gestion des paysages, de biodiversité ou encore de structuration des territoires. Toutefois, elle peut aussi générer des pressions sur les milieux naturels (uniformatisation des paysages, augmentation de la pression de pâturage, utilisation d'intrants...).

Mieux surveiller les rejets de toutes origines et développer des ressources complémentaires pour l'AEP

Des efforts sur la surveillance des rejets de quelque origine que ce soit doivent être réalisés, notamment sur les principales masses d'eau en tension identifiées au SDAGE RMC. Il semble donc nécessaire de finaliser la protection des captages, principalement dans un contexte de changement climatique où les tensions sur la ressource risquent de devenir récurrentes et de générer des conflits d'usages. Les efforts sur l'intégration des modes de pratiques agricoles et les rejets urbains et industriels au niveau des bassins-versants des zones de captages doivent être poursuivis pour limiter les apports polluants dans les milieux naturels pouvant être exploités par la suite. Simultanément, des travaux de prospection de ressources

complémentaires pour l'AEP doivent être mis en œuvre pour sécuriser l'alimentation des populations.

Soutenir l'agriculture et l'orienter vers des pratiques moins impactantes


L'agriculture doit être soutenue du fait de son importance économique et environnementale tout en orientant certaines pratiques visant à réduire ses impacts sur les ressources eau, sols et sous-sols (en limitant les intrants notamment). La réforme de la Politique Agricole Commune pourra contribuer à l'intégration environnementale des exploitations agricoles même si les cahiers des charges AOC fromage sont d'ores et déjà gages d'une certaine qualité environnementale. En parallèle, les terres arables de qualité agronomique supérieure situées en secteurs périurbains doivent être préservées de l'étalement urbain.

Indicateurs

Part des communes en zone vulnérable à la pollution par les nitrates [1]

Une zone vulnérable est une partie du territoire où la pollution des eaux par le rejet direct ou indirect de nitrates d'origine agricole et d'autres composés azotés susceptibles de se transformer en nitrates, menace à court terme la qualité des milieux aquatiques et plus particulièrement l'alimentation en eau potable. Elle impose des programmes d'actions de la part des agriculteurs. Il s'agit donc de zonage d'action dans lesquels on peut mesurer l'efficacité ou non des mesures adoptées (teneur en nitrates des eaux souterraines ou superficielles, réduction des utilisations d'engrais azotés, etc..).

Le nombre de communes en zone vulnérable à la pollution par les nitrates établit au 5ème programme de la Directive Nitrates en Franhe-Comté est de 146. Il est le même qu'en 2007.

Valeur de référence:

8.18

Unité:

Part: %

Année de référence:

2012

Type d'indicateur:

Réponse

Fréquence de mise à jour:

Tous les 5 ans

Objectif de l'indicateur:

Évaluer l'évolution du nombre de communes vulnérables aux nitrates et en déduire les influences des politiques régionales et les risques pour l'alimentation en eau potable **Sources:**

Programmes de la Directive nitrates - DREAL Franche-Comté

Chiffre actuel:

8.18

Tendance attendue:

>Négatif

Nombre d'établissements dépassant les seuils de déclaration d'émission de polluants [2]

Les émissions de polluants, issues de la production industrielles mais également agricoles, font l'objet d'une attention particulière notamment par une déclaration obligatoire dès lors que le polluant est rejeté au delà d'un seuil défini par décret. 18 polluants principaux ont été retenus pour l'air et 27 pour l'eau.

Milieu de rejet	Nom du polluant	Seuil d'émission (en Kg/an)
AIR	Acide cyanhydrique (HCN)	200
EAU	Aluminium et ses composés (AI)	2 000
AIR	Ammoniac (NH3)	10 000
AIR	Arsenic et ses composés (As)	20
EAU	Arsenic et ses composés (As)	5
EAU	Azote total (N)	50 000
AIR	Cadmium et ses composés (Cd)	10
EAU	Cadmium et ses composés (Cd)	5
AIR	Chlore et composés inorganiques (HCI)	10 000
AIR	Chlorure de vinyle (chloroéthylène - monochlorure de vinyle - CVM))	1 000
EAU	Chlorures (Cl total)	2 000 000
EAU	Chrome et ses composés (Cr)	50
EAU	Chrome hexavalent et ses composés	30
AIR	Composés organiques volatils non méthaniques (COVNM)	100 000
EAU	Composés organohalogénés (AOX)	1 000
EAU	Cuivre et ses composés (Cu)	50
EAU	Cyanures (CN total)	50
EAU	Demande biologique en oxygène (DBO5)	43 000
EAU	Demande chimique en oxygène (DCO)	150 000
AIR	Dichlorométhane (DCM - chlorure de méthylène)	1 000
EAU	Dichlorométhane (DCM - chlorure de méthylène)	10
AIR	Dioxyde de carbone (CO2)	10 000 000
EAU	Étain et ses composés (Sn)	200
EAU	Fer et ses composés (Fe)	3 000
AIR	Fluor et composés inorganiques (HF)	5 000
EAU	Fluorures (F total)	2 000
EAU	Hydrocarbures (C total)	10 000
EAU	Manganèse et ses composés (Mn)	500
EAU	Matières en suspension (MES)	300 000
AIR	Mercure et ses composés (Hg)	10
EAU	Mercure et ses composés (Hg)	1
AIR	Monoxyde de carbone (CO)	500 000
EAU	Nickel et ses composés (Ni)	20
AIR	Oxydes d azote (NOx - NO + NO2) (en eq. NO2)	100 000
AIR	Oxydes de soufre (SOx - SO2 + SO3) (en eq. SO2)	150 000
EAU	Phosphore total (P)	5 000
EAU	Phénois (Ctotal)	20
AIR	Plomb et ses composés (Pb)	200
EAU	Plomb et ses composés (Pb)	20
AIR	Poussières totales (TSP)	150 000
AIR	Protoxyde d azote (N2O)	10 000
EAU	Sulfates	1 500 000
AIR	Sulfure d hydrogène (H2S)	3 000
EAU	Titane et ses composés (Ti)	100
EAU	Zinc et ses composés (Zn)	100

Unité:

Nbre d'établissement

Année de référence:

2009

Type d'indicateur:

Pression

Fréquence de mise à jour:

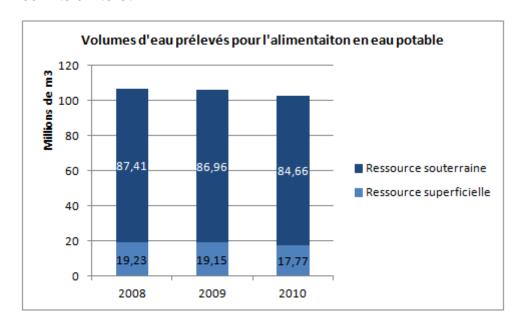
Annuelle

Objectif de l'indicateur:

Évaluer la pression de l'industrie et des activités agricoles sur les compartiments eau et air.

Sources:

MEEDDLT, Direction générale de la prévention des risques, Registre français des émissions polluantes


Tendance attendue:

>Négatif

Volumes d'eau prélevés pour l'alimentation en eau potable

[3]

L'eau prélevée pour l'alimentation en eau potable est consommée est restitué aux milieux aquatiques superficiels après utilisation, mais souvent avec une qualité altérée et une modification du régime des eaux. Les prélèvements ont donc des impacts sur l'état quantitatif et qualitatif des eaux pouvant créér des déséquilibres, risques pour la santé humaine et conflits d'intérêt.

Valeur de référence:

102.43

Unité:

millions de m3

Année de référence:

2010

Type d'indicateur:

Pression

Fréquence de mise à jour:

Annuelle

Objectif de l'indicateur:

Suivre les volumes prélevés pour l'eau potable

Sources:

Traitements : MEDDE / SOeS d'après Agences de l'eau et ministère chargé de l'agriculture/SSP.

Données : Agences de l'Eau

Tendance attendue:

>Négatif

- © Ministère de l'Écologie, du Développement durable, des Transports et du Logement
- Plan de site
- Mentions légales
- Authentification

URL source: http://perfc.dev02.linalis.com/enjeux/sante-environnement/la-pollution-des-captages-pour-lalimentation-en-eau-potable

Liens:

- [1] http://perfc.dev02.linalis.com/indicateurs/part-des-communes-en-zone-vulnerable-a-la-pollution-par-les-nitrates
- [2] http://perfc.dev02.linalis.com/indicateurs/nombre-detablissements-depassant-les-seuils-de-declaration-demission-de-polluants
- [3] http://perfc.dev02.linalis.com/indicateurs/volumes-deau-preleves-pour-lalimentation-en-eau-potable